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Abstract. We investigate the structure of extended conformal algebras generated by local 
chiral fields of spin 1 ,2 , .  . . , n using the Gelfand-Dickey algebra of formal pseudodifferen- 
tial operators for the gl( n )  algebra. The commutation relations of Zamolodchikov’s spin-3 
operator algebra are derived in the presence of an additional U( 1) conserved current. 

1. Introduction 

In a remarkable paper [ 13, Zamolodchikov initiated the study of extended conformal 
symmetries generated by chiral conformal fields of spin s 3 2, i.e. local fields of weight 
( A ,  &) = (s, 0). Furthermore, the representation theory of higher-spin operator algebras 
was developed and applied to various model of two-dimensional conformal field theory 
that exhibit discrete 2, symmetry (see for instance [2]). More recently, an alternative 
(Hamiltonian) description of two-dimensional extended conformal algebras was 
obtained using the rich algebraic structures of the classical inverse scattering method 
and the related hierarchies of integrable non-linear differential equations [3]. In 
particular, the spin-n operator algebra W,, generated by the stress-energy tensor T 
and the collection of the spin-s primary fields { w,, s = 3,4 ,  . . . , n} that might arise in 
a given theory was described in terms of the commutation relations of the Gelfand- 
Dickey algebra of formal pseudodifferential operators, G D ( S ~ (  n)), associated with the 
Lie algebra sl(n) (see also [4] for related results). In this framework, the simplest 
example ( n  = 2) is provided by the Virasoro algebra alone 

(1) 
C 

[ T ( z ) ,  T ( z ’ ) ]  = ( T ( z ) +  T ( z ’ ) ) a , s ( Z - z ’ ) + - a ~ s ( Z - z ’ )  
12 

with central charge c. 
In what follows, we first study the transformation properties of Lax operators under 

arbitary reparametrisations of the circle. This is useful in identifying the various 
conformal fields. We then give a brief exposition of the theory of Gelfand-Dickey 
algebras with emphasis placed on the general case GD(gl(n)). This way, we are able 
to incorporate in the formalism the presence of additional U( l )  conserved currents 
that arise in two-dimensional field theories. Extended conformal algebras that also 
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contain spin-1 fields are obtained and their explicit form is presented for n = 2 ,3 .  We 
note that the restriction to s l ( n ) c  gl(n) amounts to setting the U ( l )  fields zero, thus 
reducing the operator algebras we construct to the spin-n algebras W,,. Finally, we 
comment on the possiblity of introducing spin-1 fields associated with non-Abelian 
Kac-Moody symmetries in extended conformal algebras using a suitable generalisation 
of the Gelfand-Dickey framework. 

2. Transformations of Lax operators 

Let us consider first the group of (orientation preserving) diffeomorphisms of the circle 
SI and its representation on the space of linear differential operators of fixed degree n: 

It is obvious that under arbitary reparametrisations z -f a ( z ) ,  (+E Diff SI, the differential 
operators (2) transform into each other by changing the configuration of the ‘coordinate’ 
functions U,,-’, . . . , uo accordingly. For the purposes of conformal field theory it is 
most convenient to think of the operators L, as acting on densities of weight -( n - 1) /2  
rather than on scalar functions. Notice that in this case, the choice U,,-] = 0 remains 
unchanged under arbitary reparametrisations, i.e. the space of differential operators 
(2) forms an  invariant subspace under the action of Diff S’ (see for instance [3-51). 

With this in mind, we work out the transformation of the functions u , , - ~ ,  . . . , uo 
under z -f a( z ) .  We find that 

(3)  

L, = a n  + U , - ~ ( Z ) ~ “ - ’  +. - + u , ( z ) ~ +  u ~ ( z ) .  (2) 

L, ~ a ~ - ( n + l ) / 2 u  i - ( n - l ) / 2  
L,u 

where ,L,, = t f ” ’ ‘ ~ n - l ( z ) d “ - l + .  * ~ + “ u , ( z ) ~ + “ u , ( z ) .  The explicit form of 
mu,-I ,  . . . , ,u0 is quite complicated and it will not be given in the general case. However, 
it is fairly straightforward to check that for the functions U,-] and w , . . ~  the following 
is true: 

(4) - 1 ( z )  = (+’U, -1 ( a ( z  1)  

Here, S, (z )  is the Schwartzian derivative of a, i.e. S,(z)  = (a”’/u’) - $ ( u ” / u ’ ) ~ .  At this 
point notice that U,,-, transforms like a primary conformal field of weight 1, as implied 
by equation (4). Also, the linear combination 

transforms (up  to a Schwartzian term) like a quadratic differential. Indeed 
3 n - n  
12 “ W , ( Z )  = a ’ z w 2 ( a ( z ) ) + -  S,(z)  (7)  

and so w2 behaves like the stress-energy tensor of two-dimnsional conformal field 
theories. We note that the one-parameter family of fields w i ( z )  := 
u,,-*(z) - [ (n  - 1)/2]uL-,(z) + sui-, also obeys the transformation law (7) for all values 
of the numerical constant a. For reasons that will become clear later, we choose to 
work with a = -4 and so we define 
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Before proceeding further a remark is in order. The space of differential operators 
a2+u,(z) transforms according to (3) for n = 2  and U ,  = O .  In this case, equation ( 5 )  
(or equivalently (7 ) )  identifies the space of Hill-Schrodinger operators a'+ u,(z) with 
the centrally extended space of quadratic differentials. The latter is isomorphic with 
the smooth dual of the Virasoro algebra ( 1 )  and so (3) describes the coadjoint 
representation of the Virasoro algebra (see [6] for more details and further applications). 
For n > 2, equation ( 3 )  provides more general representations of Diff S' that will play 
an important role in our treatment. 

The transformation laws (4), (5) suggest that the functions U,, ( j  = 1 , 2 , .  . . , n )  
are associated with conformal fields of weight j. For instance, for n =3 ,  explicit 
calculation yields 

(+U2 

"u,(z) = a~3U,((+(Z))+("+~'U1((+(Z))+(+'''u*(a(z)) -- U ' ( r ( Z ) ) + S ; ( Z ) .  ( 9 )  
U 

Although u,(z) does not transform as a primary conformal field of spin 3, the combi- 
nation 

w," := u , - f u ' ,  +bur - fu ,u ,+  fu,u; + bu: (10) 

does so, for all values of the parameter b. More generally, it is possible to find "u,-,(z) 
for all fields entering in equation (3 )  and then consider appropriate combinations of 
them to construct conformal fields of weight 3, 4 , .  . . , n. Primary fields of integer 
conformal weight j s  n are of the general form 

(11)  

where { i } ,  { k }  are sets of integers (20 )  that satisfy the condition k ,  +. . . + k, + i l  +. * + 
ip = j. (Here ~ ' ~ ' ( z )  := dku(z)/dzk.)  The determination ofthe numerical constants C!,:{!) 
requires lengthy computations when n is large; here we restrict ourselves to the cases 
n = 2, 3 (see also [7]).  We note that for the Diff SI invariant subspace of differential 
operators L, with U,-, = 0, the expressions given above reduce to those derived in [3]. 

w,(z) = c c:!,l k ~ ,pu, ' , I (z) .  ( k  I . . u;h!;p(z) 
{ l ) , { k )  

3. Conformal algebras 

Having investigated the behaviour of u , , ( z )  ( 1  s j S n )  under arbitary reparametrisa- 
tions of the circle we may proceed further and obtain the commutation relations of 
their algebra. However, the present formalism is only suggestive of the content of the 
operator algebra generated by the chiral conformal fields w,(z) of integer spin j = 
1 , 2 , .  . . , n. The appropriate algebraic structure for this purpose is provided by the 
Gelfand-Dickey algebra. This is defined in terms of the operators L, = 
a" + u , - , ( z ) ~ " - ~ + .  . +  U J Z )  as follows: let X, denote the formal sum 

for the functionals f =flu,,, U , ,  . . . , U,- , ] .  Then for any two functionals f ,  g we 
introduce the bracket [8] 

(13)  
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where 

VX, ( Ln 1 = Ln (X,Ln )+ - ( L,X/)+Ln (14) 

with the product of operators defined using the Leibnitz rule. We also use the notation 
A+ = a,a' and res A = a-,  for any A = Z, a,a'. The bracket { , }, is antisymmetric 
and  satisfies the Jacobi identity for all functionals of uo,  u I ,  . . . , u , , - ~ .  The algebra 
constructed this way is called the Gelfand-Dickey algebra cD(gl( n ) )  [ 5 , 8 ] .  We mention 
briefly that the notation adopted here is connected with the fact that the space of 
differential operators L,  can be embedded in the smooth dual of the gl(n) Kac-Moody 
algebra (for further details see [ 9 ] ) .  

In appendices 1 and 2, we write down the explicit form of the ciD(gl(n)) bracket 
for n = 2 and n = 3 respectively. The formulae become much more complicated for 
n 2 4 and we do  not write them down. In all cases, the result follows by straightforward 
algebraic manipulations of equation (13). 

Next we apply the framework of Gelfand-Dickey algebras to construct operator 
algebras of two-dimensional conformal field theory. In general, the (primary) confor- 
mal fields wJ(z) j = 1,2 ,  . . . , n are local functionals of the 'coordinate' functions 
u o ,  u l , .  . . , U,-, (cf (1 1) )  and  their bracket can be calculated using (13). For n > 2 the 
resulting operator algebras are not Lie algebras because their determining relations 
are quadratic (and higher) in the generators wJ. However, it is easy to verify that 
w1 := u,-~ generates a U(1) Kac-Moody algebra while the spin-2 field T ( z )  given by 
(8) satisfies the Virasoro algebra (1). We find that 

n 3 - n  
12 

{ T (  z), T(z')}, = ( T ( z )  + T(z'))dz8(z - z') +- a:s(z-z ') .  (17) 

The commutation relations (15)-( 17) describe the combined U( 1)  Kac-Moody and  
Virasoro symmetry algebra which plays an  important role in string theory (see [ lo] 
and  references therein). We note that the central charge of the Virasoro algebra is 
c = n3 - n. This follows from the construction of the bracket { , },, for the particular 
operator L, = d" + u,-,d"-' + . . + uo.  Using instead the operator Ad" + u,-,d"-' +. - + 
uo with A = c / (  n3 - n )  all values of the central charge c can be obtained. 

From the general form of the Gelfand-Dickey bracket (13) we find that the quadratic 
differentials o f the  form w i ( z )  = ~ , - ~ ( z ) - [ ( n  - 1 ) / 2 ] u ~ - , ( z ) + a u t _ ,  satisfythe follow- 
ing commutation relations: 

(18) { wz" ( z ) ,  U,-1 (z')}n = Y ~ U ,  - 1 (z)dd ( Z  - 2')  

n 3 - n  
12 

{w,"(z), w;(z')}n = (wZa(z) + w;(z'))d28(z - z') +- d:s( z - z') 

+ y2(  z )  + z'))d,8( z - z'). (19) 

The numerical coefficients y ,  , y2  are given by 

(20) 
n - 1  y 2 = 2 n a 2 + ( 2 n - l ) a + -  

2 
y1 = -2an - n +  1 
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and so the combined U(  1) Kac-Moody and Virasoro algebra emerges when y1 - 1 = 0 = 
y 2 .  These conditions are satisfied by a = -: for all n. (For the cases n = 2, 3 equations 
(18) and (19) can be verified explicitly using the accompanying appendices.) This 
justifies the choice (8) for the stress-energy tensor T(z) that we made earlier. 

It is quite clear now that the space of differential operators L ,  = a + uo( z) is associated 
with the U( 1) Kac-Moody algebra while the operators L2 = d 2 +  u,(z)d+ uo(z) are 
associated with the combined U( 1) Kac-Moody and Virasoro conformal symmetry. 
Moreover, the use of the Gelfand-Dickey algebras GD(gl( n) )  for n 2 3 leads to higher- 
spin algebras associated with the space of differential operators L, = 
a" + u,-,d"-' + .  * 3 + uo.  These algebras contain both the Virasoro and U( 1) Kac- 
Moody symmetries as subalgebras (cf (15)-(17)) as well as other primary fields of spin 
2 3 .  For n = 3  the conformal fields w,(z):= u2(z), T(z) = ul(z)- u;(z)-$u:(z) and wi 
of equation (10) generate the spin-3 operator algebra in the presence of a (conserved) 
U( 1) current. Indeed, making use of the bracket { , }, given in appendix 2 we find that 

{T(z), w36(z')}3 = (W:(z)+2W~(z ' ) )aZs(z-z ' )  

{ w,"( z), wI( z')}, = ( 3  - 9 b )  w:( z)aZ8( z - z'). 

From (22) we note that the spin-1 and spin-3 fields can be taken to commute for the 
value of the parameter b =&. From now on we call w3(z) := w!'~'~' and we obtain 
the following result: 

{w3(z), w3(z')j3= -:a;s(z-Z')-&( T(z)+ T(z'))afs(z-z') 

+ i( T"( Z )  + T"( z'))aZs( z - z') 

- f (  T2(z) + T*(z'))a,s(z - z') -$( w:(z) + w:(z'))a;s(z - z') 

-A( w?(z)+ w:(z'))a,s(z - z') +& w:'(z)+ w:'(z'))d2s(z - z') 

-a (  T (  Z) w:( Z) + T (  2') w:( z'))aZs( z - z'). (23) 

(This is easily checked to be consistent with the Jacobi identity { w1 , { w3, w3}} = 0.) 
The commutation relations ( 1 9 4 1 7 )  together with (21)-(23) for b =&form a spin-3 

operator algebra which fails to be a Lie algebra due to the non-linearity of its 
determining relation for the spin-3 commutator. However, the Jacobi identity is satisfied 
for all three generators of the algebra; in the present framework this is always guaranteed 
by the defining properties of the Gelfand-Dickey algebras [8,9]. Note that for w,(z) = 0 
the commutation relations above reduce to Zamolodchikov's spin-3 algebra generated 
by the stress-energy tensor T and a chiral conformal field of weight 3 [l-41. 

More generally, we can form spin-n extended conformal algebras generated by 
chiral conformal fields of weight 1 ,2 , .  . . , n. Setting the U( 1) currents u,-,(z) to zero 
we obtain the spin-n algebras W,, considered in [l-4,7]. From the point of view of 
Gelfand-Dickey algebras the elimination of the U( 1) current u , - , ( z )  is equivalent to 
considering the algebra cD(sl(n)) which is defined with respect to the operators 
d" + u,- ,a"-*+.  * *+U, in analogy with the GD(gl(n)) case [3]. Here X,=c:=, a-'x, 
with x, = 6f/6u,-, for i = 1,2,  . . . , n - 1 and the x, is determined by the relation 

res[L,,X,]=O. (24) 
The last equation is required for consistency of the choice U,-, = O  [8]. This is also 
consistent with the fact that the space of differential operators L, with un-,=O is 
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invariant under the action of Diff SI provided that the d" + ~ , ~ - ~ d " - ~ +  + . . + uo are taken 
to act on densities of weight - ( n  - 1)/2. 

Finally, we comment on the description of non-Abelian Kac-Moody symmetries 
(and other extended symmetries) using the theory of Gelfand-Dickey algebras. For 
this purpose we consider differential operators L, which are valued in a Lie algebra 
3; the bracket { ,},, can be taken as 

where Tr denotes the trace for some particular matrix representation of 9. The simplest 
example is provided by L ,  = I d +  u " ( z ) T "  where U denotes the identity matrix and T" 
are the generators of a compact simple Lie algebra 3 with commutation relations 
[ T", T b ]  = CZbTd. Assuming the normalisation Tr( TOTb) = K S , , ~  we find that the 
bracket ( 2 5 )  gives 

{U"( z ) ,  b (  z ' ) } ,  = Czb( U d  ( z )  + U d  ( Z ' ) ) S (  z - 2') + Ks,.bd;S( z - 2') (26 )  

which is recognised as the centrally extended 3 Kac-Moody algebra. Application of 
equation ( 2 5 )  to higher-order matrix-valued operators L, would yield extended (confor- 
mal) symmetries that contain non-Abelian Kac-Moody generators. The detailed 
investigation of these algebras will be presented elsewhere. 
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